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Abstract
Freshwater ecosystems are exceptionally rich in biodiversity and provide essential benefits to people. Yet they are dispropor-
tionately threatened compared to terrestrial and marine systems and remain underrepresented in the scenarios and models 
used for global environmental assessments. The Nature Futures Framework (NFF) has recently been proposed to advance 
the contribution of scenarios and models for environmental assessments. This framework places the diverse relationships 
between people and nature at its core, identifying three value perspectives as points of departure: Nature for Nature, Nature 
for Society, and Nature as Culture. We explore how the NFF may be implemented for improved assessment of freshwater 
ecosystems. First, we outline how the NFF and its main value perspectives can be translated to freshwater systems and 
explore what desirable freshwater futures would look like from each of the above perspectives. Second, we review scenario 
strategies and current models to examine how freshwater modelling can be linked to the NFF in terms of its aims and out-
comes. In doing so, we also identify which aspects of the NFF framework are not yet captured in current freshwater models 
and suggest possible ways to bridge them. Our analysis provides future directions for a more holistic freshwater model and 
scenario development and demonstrates how society can benefit from freshwater modelling efforts that are integrated with 
the value-perspectives of the NFF.
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Introduction

The freshwater biome—comprising rivers, lakes, ponds, 
freshwater wetlands, as well as human-made systems such 
as drainage ditches and quarry lakes—is exceptionally rich 
in biodiversity (Román-Palacios et al. 2022). Although 
freshwater systems (including wetlands) cover ~ 8% of 
the world’s land surface area, they harbour about a third 
of all vertebrates and nearly half of all fish species (Leh-
ner and Döll 2004; Balian  et al. 2008; Reid et al. 2019). 
This biodiversity underpins critical freshwater ecosystem 
services (Geist 2011; Janssen et al. 2021). Ultimately, the 
well-being of humanity depends upon sustaining freshwater 
ecosystems (Albert et al. 2021). It is therefore alarming that 
freshwaters are perhaps the most imperilled ecosystems on 
the planet (Reid et al. 2019; WWF 2020), suffering from 
multiple interacting and accumulating stresses including 
climate change, water over-extraction, overexploitation, 
pollution, invasive species and infrastructure development 
(Reid et al. 2019). It is estimated that almost a third of 
the monitored vertebrate freshwater species are threatened 
with extinction (Collen et al. 2014; WWF 2020), and their 
populations globally have declined by 81% since 1970 
(McRae et al. 2017). In addition, freshwater ecosystems 
are under-represented among the world’s protected areas 
and/or lack protected areas in their upstream catchment 
(Abell et al. 2017).

At the same time, freshwater ecosystems and their biodi-
versity remain understudied and underrepresented in global 
environmental assessments that inform global environmen-
tal governance (UN Environment 2019; IPBES 2019a). 
Indeed, freshwater ecosystems are often not addressed 
explicitly, but lumped together with terrestrial ecosystems 
(van Rees et al. 2021). Freshwater biodiversity is particu-
larly poorly represented in the scenarios and modelling 
tools that support these global assessments (IPBES 2016). 
However, evidence shows that explicitly integrating the 
needs of freshwater species into conservation strategies 
increases the overall benefits to freshwater species vastly, 
with almost no loss to the terrestrial species benefits (Leal 
et al. 2020). There is a risk that the neglect of freshwater 
ecosystems will be reflected in gaps in the development 
and assessment of transformative pathways to sustainable 
futures, and directly would undermine the viability of these 
pathways.

In contrast to the poor representation of freshwater eco-
systems in global scenarios and models, we recognize that 
a wealth of tools, and associated communities of practice, 
exists for environmental assessments of freshwater eco-
systems at the local, regional and catchment scales (e.g. 
to comply with the EU Water Framework Directive 2000). 
Since the 1920s, and especially since the introduction of 
the personal computer in the 1970s, many disciplines have 
developed models to understand freshwater ecosystems, 
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perform scenario analysis and inform policy (Jørgensen 
1995). The models available today specialize in various 
freshwater ecosystems, focus on different ecosystem ele-
ments, and use a wide array of modelling approaches (see 
Janssen et al. 2015 for an overview). Examples of models 
applied in freshwater management are SWAT (Krysanova 
and White 2015), PCLake (Janse 2005; Yang et al. 2022) 
and the Water Framework Directive Explorer (Visser et al. 
2022).

Recently, the taskforce on scenarios and models of Inter-
governmental Science-Policy Platform on Biodiversity and 
Ecosystem Services (IPBES) proposed the Nature Futures 
Framework (NFF) to advance the role of scenarios and mod-
els in guiding global policy (Pereira et al. 2020), based on the 
knowledge gaps and needs identified by the IPBES thematic 
assessment report on scenarios and models (IPBES 2016; 
Kok et al. 2017; Rosa et al. 2017). The NFF provides a more 
pluralistic approach than the widely adopted conservation 
and ecosystem services approach; it provides guidance for 
the development of diverse social-ecological scenarios by the 
broader research community and aligns well with the IPBES 
approach to Nature’s Contributions to People (IPBES 2019a). 
The framework engages people’s diverse and plural values 
of nature, using three broad value perspectives of nature—
Nature for Nature; Nature for Society; and Nature as Cul-
ture—as entry points. The framework further distinguishes 
itself by focusing on desirable futures for people and nature, 
and the transformative changes needed to achieve them. As 
such, especially when quantified with models, nature futures 
scenarios may be used to substantiate and develop pathways 
toward the internationally agreed 2050 Vision “Living in har-
mony with nature” of the Convention on Biological Diversity 
(CBD), operationalize the ‘Sustainable Freshwater Transi-
tion’ as outlined by the Global Biodiversity Outlook 5 (Sec-
retariat of the Convention on Biological Diversity 2020), and 
support the ‘Emergency Recovery Plan’ to bend the curve of 
freshwater biodiversity loss (Tickner et al. 2020).

Maasri et al. (2022) listed the development of nature 
futures scenarios for IPBES as one of the key priorities for 
advancing freshwater biodiversity research. However, while 

there is an increasing number of NFF studies presented in 
the literature (e.g. see this issue), to date there are limited 
applications focusing on freshwater (but see e.g. Resende 
et al. 2020, who present a conceptual model to assess the 
impact of anthropogenic drivers on water-related ecosystem 
services in the Brazilian Cerrado). In this paper, we respond 
to the need for more actionable knowledge of how the NFF 
can be used to develop and quantify scenarios of freshwater 
futures, looking into the indicators and models that could be 
harnessed. Specifically, we explore the following intercon-
nected questions: (1) how freshwater ecosystem concepts 
align with the NFF; (2) what the NFF means for developing 
scenarios for freshwater systems; and (3) what models are 
needed to quantify these scenarios. By connecting freshwa-
ter modelling efforts and communities to the NFF, we fore-
see the potential for increasing freshwater representation in 
global policy and integration of quantitative environmental 
assessment tools within the NFF. We end with a call to con-
nect and mobilise communities of practice that are not yet 
connected to IPBES assessments.

NFF for freshwater ecosystems

Unpacking the value perspectives on freshwater 
nature futures

The NFF was proposed as a flexible tool to catalyse the 
development of diverse social-ecological scenarios that 
describe positive futures for nature and people (Pereira 
et al. 2020). It positions the three broad value perspectives 
(Table 1) in the angles of a triangular figure (Fig. 1), thereby 
opening up an interior space for exploring the diversity and 
plurality of people’s desired relationship with nature as a 
basis for scenario development and modelling (Ibid). The 
three value perspectives provide reference points that are 
applicable across spatiotemporal scales and regions, offering 
a simple structure for consistency in the scenarios and mod-
els that use it. At the same time, the NFF allows for explor-
ing the plurality of desirable people-nature relationships in 

Table 1  Generic summary overview of the NFF value perspectives (c.f. Pereira et al. 2020; IPBES/TF/SCN/2021/1/2)

NFF value perspective Nature for Nature Nature for Society Nature as Culture

Summary description In which nature has value in and of 
itself. Nature maintains its ability 
to function autonomously, and the 
preservation of nature’s diversity and 
functions is of primary importance

In which nature is primarily valued, 
and sustainably managed for the 
benefit of humans

In which humans are perceived as an 
integral part of nature, where socie-
ties, cultures, traditions and faiths 
are intricately intertwined with 
nature, and relational values, such 
as those reflecting cultural identities 
and ways of life, are dominant

Prevailing value type 
IPBES/4/INF/13

Intrinsic values Instrumental values Relational values
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resonance with local realities, based on which an infinite 
number of scenarios can be co-created. Such collabora-
tive knowledge production is key to enabling transforma-
tive change toward sustainability (Schneider and Rist 2014; 
Hakkarainen et al. 2022). An important first step in opera-
tionalizing the NFF for freshwater ecosystems is to obtain a 
better understanding of how the value perspectives apply to 
freshwater ecosystems.

Here, we take a literature-grounded approach to unpack the 
value perspectives, by compiling a non-exhaustive overview 
of existing concepts and approaches from freshwater ecosys-
tem science and conservation. We think that these existing 
concepts and approaches can be leveraged to facilitate col-
laborative connections with relevant research communities 
and reduce the risk of “reinventing the wheel” (Mooij et al. 
2010). Visioning is another powerful way of demonstrating 

how people’s values and preferences can give shape to funda-
mentally different future waterscapes (cf. Mansur et al. 2022 
who created narratives and illustrations of visions of urban 
nature futures). Although we take a complementary approach, 
we have included the freshwater future visions from Boeren 
et al. (2021) as we think such images can be inspirational 
(Box 1).

The order in which we present each of the value per-
spectives in this paper will be Nature for Nature, Nature for 
Society and Nature as Culture. This order is similar to the 
one used in earlier representations of the NFF (Pereira et al. 
2020). Although an order can represent a preference, e.g. 
with the item mentioned in the first place being the best, we 
would like to stress that each value perspective we mention 
is equally valid.

Fig. 1  Visualisation of the 
Nature Futures Framework 
(Source: PBL 2018)

Nature for Nature

Nature for SocietyNature as Culture
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Box 1. Illustrations of future visions representing 
Nature for Nature (left), Nature for Society (centre), 
and Nature as Culture (right) (from Boeren et al. 2021, 
with permission from Roel Riphagen)

A group of MSc students was commissioned to envision 
positive freshwater futures for the Netherlands in 2050 
using the NFF in a consultancy course at Wageningen 
University and Research. The project involved building a 
conceptual framework on humans and their relations with 
freshwater ecosystems and the application of the NFF. 
Based on this, three distinct visions were created—one for 
each extreme interpretation of a value perspective. Sub-
sequently, policy options were identified that can steer 
current trajectories towards the visions. The visions are:

Flowing freely—A Nature for Nature vision, in which 
humans live in densely populated cities, and through 
large restoration projects they have freed up space for 
free-roaming and interconnected freshwater systems. 
Cities provide a vital link in the freshwater system via 

green–blue solutions and humans only interfere to main-
tain the ecological flow of freshwater systems.

Directing the flow—A Nature for Society vision, in 
which humans live in a circular society that optimises the 
delivery of ecosystem services while ensuring ecosystem 
functioning. Through multifunctional ecosystem service 
delivery and technological improvement, humans reduce 
their pressures on freshwater systems and integrate fresh-
water into people’s everyday lives.

Becoming the flow—A Nature as Culture vision, in 
which freshwater is part of daily life. It flows through the 
cities, offers space for housing and farming, and represents 
the cultural foundation of many communities. Through 
education and awareness programmes, people reconnect 
with water and develop a caring relationship with it, rec-
ognising it as the source of life. In the illustration, anthro-
pomorphic water figures are becoming the flow; thereby 
representing the strong connection between people’s iden-
tities and the way freshwater flows through the landscape.
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Nature for Nature concepts

The Nature for Nature perspective embodies intrinsic values 
of nature, i.e., valuing nature in and for itself. As such, the 
protection of freshwater bodies in freshwater-protected areas 
(Saunders et al. 2002; Gardner and Davidson 2011) is one 
of the key concepts of the Nature for Nature value perspec-
tive. However, given the key role of connectivity in defin-
ing freshwater ecosystems (Saunders et al. 2002; Teurlincx 
et al. 2019), the effectiveness of area-based approaches is 
limited. The natural flow regime, a concept introduced by 
Poff et al. (1997), describes how the ecological integrity of 
rivers and streams is dependent on dynamic and variable 
water regimes. A broader concept, looking towards the res-
toration of ecosystems through active or passive removal of 
human influence, is rewilding. For freshwater ecosystems, 
this could mean restoration of the natural flow regime over 
a great distance downstream through the removal of dams, 
dikes, or other man-made structures (Mitsch 2013; Rideout 
et al. 2021), or the reintroduction of ecosystem engineers, 
such as beavers (Law et al. 2017). Recently, Turak et al. 
(2017) explained how Essential Biodiversity Variables are 
useful for measuring change in global freshwater biodiver-
sity, in terms of genetic composition, species populations, 
species traits, community composition, ecosystem structure, 
and ecosystem function. A legal concept to protect freshwa-
ter ecosystems is environmental personhood. This concept 
designates environmental entities, such as rivers and lakes, 
the status of a legal person, thus giving legal rights, protec-
tions, privileges, responsibilities, and legal liability (Cano 
Pecharroman 2018). The issue of the fact that nature cannot 
speak for itself is handled through the selection of human 
representatives. A more radical point of view on the legal 
system is found in the work of Celermajer et al. (2021) on 
the idea of multispecies justice, a concept that rejects the 
idea that humans are separate and unique in comparison to 
all other species and that could redefine how we approach 
justice today.

Nature for Society concepts

The Nature for Society perspective promotes instrumental 
values of nature, i.e., valuing nature for its utilitarian benefits 
to people. A key concept underpinning this perspective is 
freshwater ecosystem services, including provisioning ser-
vices, such as the supply of freshwater fish for food, regu-
lating services, such as recharge of drinking water supplies 
and regulation of water quality, and non-material services 
including water-based recreation and tourism (see Janssen 
et al. 2021; Vári et al. 2022 for recent overviews). A closely 
related but more inclusive concept is Nature’s Contribu-
tions to People (NCPs), of which the generalised perspec-
tive on regulating and material NCPs is particularly relevant 

here (Díaz et al. 2018). The environmental flows concept 
describes “the quantity, timing, and quality of freshwater 
flows and levels necessary to sustain aquatic ecosystems 
which, in turn, support human cultures, economies, sustain-
able livelihoods, and well-being” (Arthington et al. 2018). 
Linked to sustainable use is the Maximum Sustainable Yield 
(MSY), defined as the maximum catch that can be removed 
from a (fish) population over an indefinite period (Maun-
der 2008). Ecological resilience, and derived concepts like 
safe-operating space (Carpenter et al. 2017) and critical 
loads (Janse et al. 2008), are used to determine exploitation 
levels beyond which undesirable changes occur. Freshwater 
flows and associated contributions to people can be strongly 
affected by the watershed landscape. The NCPs provided by 
the landscape to freshwater systems, encompassing the ways 
that nature regulates the quantity, quality, location, and tim-
ing of flows, are addressed in hydrologic ecosystem services 
literature (Brauman et al. 2007).

In the urban context, the concepts of Blue Infrastruc-
ture (Andersson et al. 2019) and Blue spaces (Garrett et al. 
2019) are gaining traction, referring to freshwater systems 
in the landscape, and their functional connections, that have 
the potential to provide ecosystem services like moderat-
ing urban heat waves. The closely related topics of Nature-
based solutions, nature-based water management, and green 
infrastructure encompass projects that harness landscape 
processes to improve the management of water for various 
benefits, such as flood risk reduction (World Water Assess-
ment Programme/UN-Water 2018).

Nature as Culture concepts

The Nature as Culture perspective considers humans as an 
integral part of nature and values the reciprocal relation-
ship between people and nature. It recognizes that multiple 
worldviews exist and that they are underpinned by values 
that are neither intrinsic nor instrumental, as is clear from 
engaging Indigenous Peoples and Local Communities (Pereira 
et al. 2020; IPBES 2022). Water is central to many religious, 
spiritual, and traditional practices and other cultural aspects 
that shape people’s identities. For indigenous peoples, water 
bodies are often sacred and ancestral (Jackson and Barber 
2015; Latchmore et al. 2018; Machado 2020). However, 
western conceptualizations of freshwater ecosystems gener-
ally struggle to address local and indigenous views, values, 
and knowledge systems. Indeed, “How can we broaden the 
current models and orthodoxies at the science-policy inter-
face to integrate worldviews from indigenous and multicul-
tural understandings?” is one of 25 essential research ques-
tions to inform the protection and restoration of freshwater 
biodiversity posed by Harper et al. (2021). Useful concepts 
that emphasise the combined cultural and natural elements 
of water do exist. Cultural Keystone Species are species that 
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critically shape the cultural identity of indigenous peoples, as 
reflected in the fundamental roles these species have in diet, 
materials, medicine, and/or spiritual practices (Garibaldi and 
Turner 2004; Noble et al. 2018). Related to environmental 
flows, the cultural flows concept focuses on managing flows 
in ways that recognize, respect, and support cultural ways of 
life (Lokgariwar et al. 2014; Magdaleno 2018). Also relevant 
are the ‘context-specific perspectives’ on NCPs (Díaz et al. 
2018) and the non-material contributions of nature, such as 
spirituality, but also cultural dimensions of boating, angling, 
and ice-skating. These concepts are in principle not restricted 
to indigenous communities but may also apply in ‘western’ or 
urbanised societies. More generally, sense of place (Murphy 
et al. 2019) and biocultural approaches (Johnston 2013) to 
understanding people's relationship with freshwater systems 
align with the Nature as Culture perspective.

Overlapping concepts

Many of the presented concepts are not bound to a single 
value perspective. The environmental flows concept is 
used to promote the integrity of ecosystems, and to sup-
port human cultures, economies, sustainable livelihoods, 
and well-being; thereby addressing all three value perspec-
tives (Arthington et al. 2018). Moreover, through the con-
cepts, the value perspectives are able to reinforce each other. 
For example, giving rights to nature can be a vehicle for 
recognising indigenous peoples' relationships with natural 
entities (Cano Pecharroman 2018). Establishing freshwater-
protected areas can increase both protein and cash returns 
to fisheries (Hannah et al. 2019). Riverine reserves created 
by local/indigenous communities have markedly increased 
the richness, density, and biomass of fish relative to adjacent 
areas (Koning et al. 2020). Bremer et al. (2018) revealed the 
overwhelming importance of relational values underlying 
‘upstream’ participation in Payments for Watershed Services 
projects. Therefore, each concept could also have possible 
co-benefits and synergies and may be used in the creation of 
scenarios where multiple values are enhanced.

Quantifying freshwater nature futures

After unpacking the three value perspectives to better under-
stand how the NFF opens a space for representing a diversity 
of desirable freshwater nature futures, this section looks into 
how to conduct quantitative assessments of those futures, not 
least to identify possible actions to get there. Such assess-
ments of the future typically involve the development of 
scenario storylines and quantifying these scenarios with 
models. We outline an approach for designing scenarios and 
selecting models for freshwater nature futures, by reflecting 
on the key components and giving examples of freshwater 
models that are already available to us.

Although we mention scenarios before models, it is impor-
tant to keep in mind that the creation of scenarios and running 
of models typically involve an iterative process. Conducting a 
quantitative modelling exercise requires one to become spe-
cific about inputs, outputs, and processes, possibly pointing to 
gaps in scenario storylines. Furthermore, the logic of dynami-
cally interacting mathematical equations challenges scenario 
assumptions, while model outcomes enrich storylines. Nev-
ertheless, it is advisable to start with scenarios, so as to not 
be limited by what (existing) models can do. Indeed, it might 
be that essential elements of the scenarios are not yet in any 
model and have to be researched and developed.

Scenarios

Scenarios are descriptions of how the future may unfold. 
IPBES (2016) uses a classification of scenario types that can 
be linked to different phases of the policy cycle.

Exploratory scenarios examine a range of plausible 
futures based on potential changes in direct and indirect 
drivers of change, making them particularly relevant when 
faced with high levels of uncertainty. As such, exploratory 
scenarios are often used to assess the consequences of envi-
ronmental change, to raise awareness of future challenges 
and support agenda-setting. Typical examples are the Rep-
resentative Concentration Pathways (RCPs) and the Shared 
Socio-Economic Pathways (SSPs) developed by the climate 
community, which have been used to, for example, explore 
possible futures for the freshwater security of the country 
of Jordan (Yoon et al. 2021), global nutrient emissions to 
waters (Beusen et al. 2022), and the climate variability of 
fish (Dahlke et al. 2020; Barbarossa et al. 2021).

In policy-screening scenarios, the effects of alternative 
policy or management options are forecasted and compared 
with a predefined policy-relevant variable. For example, 
alternative scenarios of agricultural best management prac-
tices for the Lake Erie watershed were used to evaluate their 
effect on nutrient loading into Lake Erie (Bosch et al. 2013).

Target-seeking scenarios start from an agreed-upon 
future target, after which possible pathways towards that 
desired outcome are explored. This means thinking in 
measures that can be taken in the present day to obtain 
the target(s), recognizing that adaptive management can 
be used to enhance outcomes (Kingsford et al. 2011). It 
is also possible to approach target-seeking scenarios in 
reverse, working from the future towards the present. This 
technique is also known as ‘backcasting’ (Dreborg 1996; 
Paehlke 2012). An example of a target-seeking scenario 
is the adaptive plan for long-term water management of 
the Rhine Delta in the Netherlands developed using the 
“Dynamic adaptive policy pathways” approach (Haasnoot 
et al. 2013).
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As one of the strengths of the NFF lies in its definition 
of a desired future (i.e. target), at first glance target-seeking 
scenarios seem the only way to approach the visions of the 
future of the NFF. However, although policy screening sce-
narios do not work directly towards the target, they are still 
useful to see which policies bring the present the closest to 
the desired future. Even exploratory scenarios remain useful, 
for example, to stress-test target-seeking scenarios (see van 
Vliet and Kok 2015).

Durán et al. (2023) show how different scenario storylines 
can be developed based on the NFF. The NFF can also be 
combined with existing frameworks and methods for sce-
nario creation. For example, in a participatory workshop in 
a new National Park the NFF was applied together with the 
Three Horizons Framework and the Sustainable Develop-
ment Goals to collaboratively think about what desirable 
futures could look like, and assess their potential contribu-
tion to sustainable development (Kuiper et al. 2022).

While it is helpful to stick to generic and broad ideas 
at the start of scenario development, these ideas need to 
become quantifiable at the moment the scenarios are applied 
to models. For example, a biodiverse future sounds attractive 
but this idea needs refining to be able to address relevant 
(model) questions such as what species groups we are refer-
ring to, and in what quantity we consider them to be suf-
ficient in our desired future. As it is sometimes difficult to 
understand what can be modelled and what cannot, involving 
modelling experts during scenario development assists in 
bringing the scenarios closer to model feasibility (Volkery 
et al. 2008). Additionally, finding the right elements to quan-
tify might prove challenging, especially when taking into 
account that not every NFF value perspective is commonly 
included or modelled yet (Kim et al. 2021), let alone the 
value perspectives represented by the plural interior space 
of the framework. Therefore, we provide starting points for 
quantifiable elements (indicators) for each of the three value 
perspectives in Box 2.

Box 2. Indicators of freshwater nature futures

Nature for Nature indicators

There are many elements that could be incorporated 
into a scenario to monitor the impact of actions on the 
intrinsic value of freshwater ecosystems. One that is 
widely used is the area size, in the form of the propor-
tion of area (%) protected (Nel et al. 2007; Dorji et al. 
2020) or the area of intact ecosystems within a country. 
Besides that, one could monitor if specific species are 
positively influenced by a certain measure. For example, 
by checking if the number of individuals is increasing 
(Reid and Morris 2017) or by checking if the ecosystem 

that supports a certain species is still functioning (Fisk 
II et al. 2014). Additionally, one could use a biodiver-
sity index, such as the biological integrity index, or the 
mean species abundance, to monitor if foreseen actions 
change the overall biodiversity in an area (Janse et al. 
2015). A set of Essential Biodiversity Variables (EBVs) 
have been proposed to harmonise different approaches 
to measuring and monitoring the state of nature (Turak 
et al. 2017; Jetz et al. 2019).

Nature for Society indicators

The wide range of regulating and material benefits 
of freshwater ecosystems to people can be evaluated 
using both biophysical indicators and human impact 
indicators (Brauman et al. 2020). For example, fresh-
water systems provide a critical material benefit for 
food production. This benefit could be quantified using 
biophysical indicators such as total fish biomass, fish 
landings, or fish biodiversity (Lynch et al. 2016). Food 
production from freshwater systems could also be quan-
tified using human impact indicators such as fish pro-
tein available per capita, nutritional status of fisherfolk, 
and income from fishing (Lynch et al. 2016). Monetary 
value is just one of many indicators of the benefit of 
nature for society. Quantifying benefits in economic 
terms can be useful, especially when it allows for the 
integration of ecological studies with other monetary-
based policy assessments. However, although there is 
a wide range of approaches to monetization, economic 
approaches in practice frequently fail to capture the 
full suite of benefits and drawbacks of nature to soci-
ety (IPBES 2022). Regulating benefits are most often 
quantified using biophysical indicators because human 
well-being is closely associated with environmental 
conditions, and environmental conditions are frequently 
dominated by drivers other than ecosystem services. 
For example, the risk of floods can be reduced through 
the preservation of upstream floodplain wetlands (Acre-
man and Holden 2013). Human well-being might be 
measured as health impacts from pollutants in water 
sources or lost revenue from expanding coastal dead 
zones (IPBES 2019b). The importance of indicators 
across supply, demand, and value has been highlighted 
by GEO BON’s work on Essential Ecosystem Services 
Variables (Balvanera et al. 2022). For global studies, 
the number of people in a watershed may be used as a 
large-scale proxy indicator (e.g. Chaplin-Kramer et al. 
2019).
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Nature as Culture indicators

Freshwater systems also provide materials and environ-
ments central to relational values and non-material ben-
efits such as learning, experience, culture, and identity 
(Lynch et al. 2016). Because these values and benefits 
tend to be highly dependent on cultural context, indicators 
are most often locally specific and a large body of litera-
ture is developing to support plural valuation approaches 
(Dasgupta 2021; IPBES 2022). A way to measure cultural 
values is through locally developed indices, such as The 
Cultural Health Index (CHI) for freshwater (Harmsworth 
et al. 2011; Moggridge et al. 2022). The CHI can be gen-
eralised into three pillars: the cultural importance of the 
site, the importance of the site for cultural or spiritual 
resource use, and the cultural requirements of the local or 
regional water system. Each of these three pillars can in 
turn be used to define a set of more concrete quantitative 
indicators. For example, the cultural importance of the 
site can become the presence of sacred rivers (Lokgari-
war et al. 2014); the importance of the site for cultural 
or spiritual resource use can become fishing of cultural 
keystone species (De Alessi 2012), or the number of peo-
ple that can ice skate (Knoll et al. 2019); and cultural 
requirements can become maintaining historical condi-
tions of flow.

A more specific example of well-defined Nature 
as Culture indicators can be found in Mãori natural 
resources management in New Zealand (Harmsworth 
et al. 2016) where multiple indexes have been developed 
aimed at including and weighing the cultural importance 
of Mãori heritage in decision-making around fisheries, 
nature, and water management. In Bali, studies of the 
traditional subak system—whereby local “water temples” 
manage irrigation and affect the ecology of entire land-
scapes—also illustrate possible indicators of relational 
values associated with Nature as Culture (Lansing 1987).

Models

Models are critical tools to generalise, interpret and extrap-
olate links between drivers of change and an indicator of 
interest (IPBES 2016). Important elements for modelling 
systems are the availability of data for model input and the 
formulation and validation of processes. Data for models 
can originate from a wide range of sources, such as empiri-
cal lab or field studies, descriptive studies, and expert or 
local knowledge. Processes can be modelled based on first 
principles or mechanistic relationships between drivers and 
indicators or empirical derivatives thereof. Increasingly, the 
need for modelling social-ecological systems with complex 
feedbacks between humans and ecosystems is recognized 

(Downing et al. 2014; Mooij et al. 2019). Such models 
encompass processes and impacts of human pressures as 
well as interventions to mitigate the impacts on the desired 
ecological outcomes.

Finding an ideal model for the desired values in the NFF 
is difficult; a recommended approach is working towards a 
conceptual model (Downing et al. 2014). One way of build-
ing such a conceptual model is via the Driver-Pressure-State-
Impact-Response framework (Borja et al. 2006), a frame-
work that also explicitly includes indicators. The DPSIR 
framework is used in Europe for the Water Framework 
Directive (WFD; 2000/60/EC), and it assists managers in 
understanding the socio-ecological system in terms of driv-
ing forces (e.g. social, economic, or environmental develop-
ments), that exert a pressure on the ecosystem, which results 
in a change of the state of the ecosystem, which then impacts 
other elements of the socio-ecological system, and leads to 
responses of society to remedy undesirable impacts. Once 
a conceptual model exists, it can be used to define potential 
scenarios or pathways towards quantifiable end goals and aid 
in the selection of (more) quantitative models.

Mathematical modelling in the context of the conceptual 
model will require models that contain indicators for desired 
goals, drivers and pressures influencing said goals (directly 
or indirectly), and measures that can be taken to steer eco-
logical and social developments towards reaching said goals. 
It is unlikely that a single mathematical model includes all 
elements of interest. Nor will all data needed to parameter-
ize or validate such a model be readily available. Nonethe-
less, there is a broad range of freshwater ecosystem models 
available (Janssen et al. 2015). Repurposing existing models 
to fit questions posed by the developed pathways requires 
either: (1) adding a missing element to a pre-existing model 
(e.g. addition of habitat suitability curves to the HEC-RAS 
model in Kim and Choi 2021) or (2) connecting multiple 
models to form a modelling chain (e.g. connecting IMAGE 
and GLOBIO-Aquatic in Janse et al. 2015).

To integrate models (either directly, or via modelling 
chains) one can opt to either connect the models them-
selves or to connect the people from communities of prac-
tice around different models, and transfer inputs, outputs, 
and insights. Connecting models requires expertise to be 
concentrated in one place, but the resulting model could be 
optimised for scenarios and possibly be run faster without 
the need for continuous consultation. For connecting people 
across communities of practice, the expertise could remain 
in the places where models were developed, and due to fre-
quent consultation, the number of errors made during the 
process could be reduced (Janssen et al. 2015). It is recog-
nized that linking models can increase uncertainty (Voinov 
and Shugart 2013). IPBES (2016) provides a detailed dis-
cussion of uncertainty inherent in the use of scenarios and 
models.
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When current knowledge is insufficient to formulate 
relationships needed to model a given pathway, either new 
research will be needed to elucidate these relationships (i.e. 
expanding the knowledge base) or the pathway would need 
to be abandoned as too uncertain due to lack of knowledge 
on key components. Both outcomes are valid and valuable, 
as they can focus (empirical) research or promote choices 
for evidence-based pathways over non-evidence-based 
pathways.

Knowing some starting points on freshwater ecosystem 
models can speed up the process of building the freshwater 
ecosystem models that we need to start modelling the sce-
narios pertaining to the NFF values perspectives. Therefore, 
in the next section, we will provide examples of freshwater 
models that are currently in use.

Nature for  Nature models Models for Nature for Nature 
typically simulate the biological integrity of water systems 
or their components. An example of a model that fits well in 
the Nature for Nature model category is GLOBIO-Aquatic 
(Janse et  al. 2015). GLOBIO-Aquatic contains empirical 
relations between pressures and biodiversity and has the 
mean relative abundance of original species (MSA), repre-
senting biodiversity intactness, as an outcome. GLOBIO-
Aquatic has been applied in a modelling chain with the inte-
grated assessment model IMAGE, using the information on 
land use, hydrology, and climate, to come up with predic-
tions on biodiversity intactness of freshwater ecosystems 
under different scenarios (Stehfest et al. 2014; Janse et al. 
2015). An advantage of applying this model chain is that 
it includes the whole socio-ecological system from drivers 
to responses. Besides that, it is a model intended for use on 
a global scale (Janse et  al. 2015). However, as the model 
is based on empirical data comparing undisturbed and dis-
turbed ecosystems, it is less suited to be applied in semi-nat-
ural landscapes where the definition of the ‘reference state’ 
might be ambiguous.

Other examples that suit the Nature for Nature category 
well are models that simulate the habitat suitability of fresh-
water ecosystems. For example, the model RHABSIM was 
used to explore if the endangered Robust Redhorse (a fish 
species native to the south-eastern USA) could be reintro-
duced into a freshwater river reach in between two dams, 
by checking how the physical attributes of this river reach 
aligned with the spawning habitat preferences of the fish 
(Fisk II et al. 2014). Additionally, the combination of the 
process-based hydrodynamic model ELCOM and ecosys-
tem model CAEDYM has been used to simulate how water 
temperature and dissolved oxygen will change under dif-
ferent climate scenarios and how that in turn could impact 
the growth or death of fish species living in cool waters 
(Missaghi et al. 2017). Another, more generic, tool for esti-
mating habitat suitability is HABITAT (Haasnoot and van 

de Wolfshaar 2009). This tool allows the user to spatially 
estimate suitable habitats for a species of interest, by over-
laying maps with information on habitat characteristics with 
knowledge rules on habitat requirements. An advantage of 
these habitat suitability models is that the underlying pro-
cesses can be simulated via process-based models, allowing 
for application in all kinds of scenarios. The disadvantage 
of these models is that they usually focus on the ecosystem 
itself, and do not include societal influences directly. Besides 
that, the fact that a species could occur in a certain area does 
not necessarily mean that it will occur in this area, say in 
case of a hard barrier between the species and the area.

Single-species-models or assemblages of multiple-spe-
cies-models are also representative of Nature for Nature, 
as these models aid in the understanding and protection of 
single or multiple species by connecting the occurrence 
of species to environmental factors. These models differ 
from the habitat suitability models in their aim to predict 
and understand the presence of a species, rather than the 
presence of its habitat (Peterson and Soberón 2012). Recent 
examples of freshwater multiple-species-models are that of 
Inoue et al. (2017), who investigated abiotic and biotic fac-
tors underlying the distribution and co-occurrence of two 
mussel species in European river ecosystems to improve 
conservation efforts, and that of Barbarossa et al. (2021), 
who made a global model of riverine fish species to assess 
possible climate-related range shifts. Examples of single 
species models are present in Jähnig et al. (2012), where 
a chain of models was used to predict the occurrence of 
a freshwater bivalve in a river ecosystem, and in Mafuwe 
et al. (2022) where the maximum entropy model MaxEnt 
was used to estimate the region of occurrence of three threat-
ened Zimbabwean freshwater species for which limited data 
were available. As species models are more geared towards 
extrapolating patterns in nature, they are usually correlative 
(i.e. their relationships are based on empirical data), and less 
likely to address the direct influence or response of society 
upon the targeted species.

Nature for  Society models Models for Nature for Society 
typically simulate the benefits people obtain from freshwater 
systems and the underpinning processes, including anthro-
pogenic impacts. For example, watershed models that simu-
late the runoff of water and associated constituents from the 
landscape can be used to represent ecosystem services in 
support of Nature for Society. In particular, process-based 
watershed models can be used to assess multiple future sce-
narios of climate and land use. Francesconi et  al. (2016) 
reviewed 44 papers using the SWAT model from an ecosys-
tem services perspective and found that the model was used 
to look at provisioning services such as stream flow and 
water yield, regulating services for water and sediment, or 
a combination of the two types of services. Multiple water-
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shed models may be used together in an ensemble approach: 
Joint Research Centre et al. (2015) provide an example of 
this approach for the Danube watershed, which supports the 
second-largest river system in Europe. Watershed models 
alone do not represent the full socio-ecological spectrum, 
typically only linking stressors to state, with links to impact 
determined through post-processing of model results. How-
ever, watershed models can be used within integrated mod-
elling approaches to support freshwater systems analysis (Li 
et al. 2019; Yang et al. 2022).

The provisioning of food through fisheries is another 
important freshwater ecosystem service, particularly from 
large lakes (Welcomme et al. 2010; Sterner et al. 2020). 
While not as substantial as for marine systems, modelling 
literature exists for the provisioning of food and subsistence 
resources in freshwater (Lorenzen et al. 2016; Natugonza 
et al. 2016). These models include statistical and population 
models, which may represent linkages to drivers and pres-
sures, as well as management activities. There are limited 
examples of models for other types of food provisioning, 
such as plants and wildlife (e.g. Aagaard et al. 2019). Food 
provisioning models tend to be focused on the management 
of the resource, and often are not integrated with models 
for other ecosystem services—this is an area for future 
development.

Examples of integrated approaches to modelling eco-
system services, including freshwater services, and linking 
to human impact, are InVeST and ARIES (Vigerstol and 
Aukema 2011). The advantages of these two ecosystem ser-
vice models are that they cover multiple provisioning and 
regulating services in support of Nature for Society (with 
Nature as Culture and Nature for Nature addressed to a lesser 
extent), that they consider alternative scenarios for land 
use and that they can be applied at different spatial scales. 
These and a number of other ecosystem services models 
include modules for economic valuation of both material 
and non-material benefits of nature; displaying a variety 
of approaches to economic valuation ranging from direct 
market prices to non-market valuation techniques (Dasgupta 
2021). Additional ecosystem service model examples can be 
found in the IPBES (2016) models and scenarios assessment.

While applied models seem particularly useful for the 
Nature for Society perspective, we note that theoretical 
models too can provide key insights for understanding the 
dynamic dependencies of people on nature. An example is 
a theoretical model that outlines the trade-offs between vari-
ous human uses of an ecosystem that differ in their impact 
on the ecosystem (Scheffer et al. 2000).

Nature as Culture models Models used for Nature as Culture 
typically relate to arts, beliefs and other relational values of 
water systems. The modelling field that simulates Nature as 
Culture is still evolving, yet some insightful examples exist. 

When species are of cultural significance, models for these 
species are useful for estimating the impacts of scenarios 
on freshwater cultural services. Species distribution or spe-
cies abundance can be simulated with species distribution 
models or population models (see “Nature for Nature mod-
els”). Similarly, other aspects of the freshwater ecosystem 
(not being species) that hold cultural value can be simulated 
with models that specialise in these aspects (e.g. freshwa-
ter ecosystem or watershed models, see “Nature for Society 
models”). However, for all these models, additional infor-
mation on their cultural relevance will be needed to place 
themodel outputs or inputs in the context of their cultural 
significance. For example, even when river discharges are 
accurately modelled, it will be only through interaction with 
indigenous and/or local people that the amount of river dis-
charge required for religious purposes comes to light (Lok-
gariwar et al. 2014). As such, indigenous and local commu-
nities have an important role to play in model construction 
and the interpretation of model outputs.

Where some aspects of cultural values are readily mod-
elled, other aspects, such as the values people place on a 
natural area, are more difficult to capture in numbers. In 
some cases, these values can become part of the modelling 
process, e.g. through model selection or the prioritisation of 
model outcomes by stakeholders via a participatory model-
ling approach (Voinov and Gaddis 2008). In other cases, the 
cultural values appear intangible; for how do we model val-
ues such as harmony with nature, inspiration, or the loss of 
local ecological knowledge? A proxy for some of these val-
ues could be the intactness and functioning of nature itself, 
and thereby in the models that fall into the Nature for Nature 
category (see “Nature for Nature models”). For there appears 
to be a positive relationship between aesthetic appreciation 
and the intrinsic values of nature (Arias-Arévalo et al. 2017). 
Another proxy could be the access people have to an area. 
Models that simulate access to areas are used in the tour-
ism industry, by environmental economists, and by spatial 
planning agencies. For example, a model created to estimate 
the use of wildlife parks in Africa based on entrance fees 
(Day 2000), might be adapted to estimate the accessibility of 
nature to different groups of people. Additionally, models for 
non-economic valuations of nature (e.g. Maher et al. 2020), 
even though they are inherently grounded in the Nature for 
Society perspective, might provide inspiration for modelling 
the Nature as Culture perspective.

Discussion

Towards pluralistic freshwater nature futures

Freshwater modelling can be linked to the NFF by generat-
ing scenarios to drive the models (Fig. 2). The three value 
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perspectives in the corners of the triangular NFF provide 
a minimal set of entry- and anchor points for developing 
diverse social-ecological scenarios (Pereira et al. 2020). The 
resulting nature futures do not necessarily need to reflect 
these three value perspectives, as in fact, the corners provide 
extreme perspectives on what can still be considered ‘desir-
able’ (Durán et al. 2023). In practice, we expect many nature 
futures scenarios to be a mix of the value perspectives. Yet, 
focusing on the three perspectives helps to explain how 
clearly contrasting nature futures scenarios can be produced 
from the NFF. Especially when quantified, the analysis of 
these scenarios will expose the consequences of alternative 
development trajectories, including inevitable trade-offs, but 
also possible synergies. Therefore, and because the three 
perspectives are a distinctive part of the NFF, we organised 
the structure of this paper around the three archetypes. At the 
same time, the presentation of relevant concepts in “Unpack-
ing the value perspectives on freshwater nature futures”, and 
indicators of Box 2, showed how the three value perspec-
tives can be linked to each other through the concepts, and 
hence the policy options related to these concepts. The three 
perspectives can subsequently be used as entry points for 
further consideration of the interior of the triangular space 
for the development of nature futures scenarios that enhance 
multiple values of nature simultaneously. While tensions 
may be expected within a nature futures scenario where any 
of the value perspectives blend, identifying these tensions 
is a key step towards mitigating them to achieve the desired 
future. For example, knowing that dam removal for nature 

restoration in long-humanized landscapes can jeopardize 
people’s identity and relationship with the landscape (Fox 
et al. 2016), aids in identifying either active stakeholder 
engagement or alternatives to the dams’ removal as new 
steps forward (Habel et al. 2020). Importantly, the methodo-
logical approach that we outlined for developing freshwater 
nature futures remains generally the same.

Building the bridge to freshwater modelling 
communities

From the examples of the freshwater ecosystem models 
available to each value perspective, it is clear that the cur-
rent state-of-the-art of aquatic ecosystem modelling has 
developed a plethora of useful outcomes for aquatic ecosys-
tem responses to varying pressures, providing support for 
Nature for Nature. These outcomes have also been expressed 
in terms of their impact on ecosystem service provisioning, 
or are framed as such, which provides partial support for 
Nature for Society. However, there are limited examples of 
freshwater ecosystem models supporting Nature as Culture. 
The challenge is thus to bridge these gaps and to start incor-
porating the full range of value perspectives of the NFF into 
our freshwater ecosystem models. A way forward here is 
to start introducing the NFF to the forums of the freshwa-
ter modelling communities (e.g. AEMON at https:// groups. 
google. com/g/ aquat icmod elling? pli=1, GLEON at https:// 
gleon. org/, ISIMIP at https:// www. isimip. org/, UN EP 
WWQA at https:// commu nities. unep. org/ displ ay/ WWQA). 
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Fig. 2  With the NFF we are now able to create positive and holistic 
visions of the freshwater ecosystem futures we want (NFF visions). 
Operationalizing these futures requires us to develop scenarios that 
lead us from the present to our visions (Scenarios; the dark blue dot 
represents the current state of our freshwater ecosystems, and the 
arrows represent the different pathways we could take to reach our 
desired future). The scenarios we design are frequently abstract. To 
make them tangible, we have to define which elements of our future 
are measurable or quantifiable, i.e. which elements are our indica-
tors (Indicators). Once we know our indicators, we have a bridge 
between our scenarios and models, and we can start approximating 

the impacts of our ideas with models (Models; the bridge between 
qualitative and quantitative is indicated with the colour gradient from 
blue to orange). Working from scenarios to models is not a linear pro-
cess, but rather an iterative process (as indicated by the arrows going 
back from the models to the scenarios picture). With the model out-
comes we can start to formulate actions and bring our ideas to life, 
thus bringing us to the NFF futures we want (NFF futures; this pic-
ture is transparent, as the future always remains uncertain). The envi-
ronmental vector images were sourced and adapted from Integration 
and Application Network (ian.umces.edu/media-library)

https://groups.google.com/g/aquaticmodelling?pli=1
https://groups.google.com/g/aquaticmodelling?pli=1
https://gleon.org/
https://gleon.org/
https://www.isimip.org/
https://communities.unep.org/display/WWQA
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Bringing the NFF into these communities will also start the 
process of shifting our focus from only modelling the unde-
sirable futures we ‘might end up with’, towards the futures 
we want to achieve.

Building a bridge between the NFF and the freshwater 
modelling communities will not only be beneficial to fresh-
water modelling efforts but will also aid the development of 
the NFF and its nature futures. Modellers, by the definition 
of their work, are forced to be logically consistent. Hence, 
in a setting where the NFF is applied, modellers are likely 
to make sure that futures are defined with plausible and/
or quantitative indicators. Also, gaps in knowledge, tools 
and expertise may be defined earlier when tackling ‘defin-
ing pathways towards desirable futures’ together. Involving 
modellers early on in the design and implementation of the 
NFF to case studies will ensure that model outcomes, value 
perspectives and quantification thereof become integrated 
(Volkery et al. 2008).

Aligning models and data for freshwater futures

Developing tools that answer relevant questions, inform 
policy and further scientific research requires a co-creation 
effort between empirical scientists, stakeholders and mod-
ellers. Sharing data via open repositories in a FAIR manner 
is essential to stimulate model development and validation 
(Wilkinson et al. 2016). Although data parameterisation 
and the process formulation of models are firmly in the 
realm of the modelling community to derive, identifying 
their need is a joint effort. Further, gathering the data to 
adequately parameterize such processes will require inter-
disciplinary experts to ensure suitable designs of experi-
ments and measurements. While data for both validation 
and parameterization may be lacking to model all aspects 
of the NFF at current, the application of the NFF can help 
to identify and focus research efforts. Co-creating NFF 
pathways with modellers will help to anchor processes 
relevant to desired pathways firmly into ongoing model 
development, increasing model applicability to environ-
mental policy questions.

Ways forward

Perhaps the largest challenge is representing the complex-
ity of freshwater ecosystems in the context of the socio-
ecological system. To advance the field of modelling of 
pathways towards desirable futures we will need to push the 
boundaries of transdisciplinary modelling efforts towards 
true social-ecological models. Social-ecological models are 
currently in their infancy (Downing et al. 2014; Hughes 
et al. 2017; Sun and Hilker 2020) and including feedback 
between societal actions and perception on top of ecological 

responses in future models is acknowledged as an important 
step forward (Mooij et al. 2019). Doing so will require inte-
grated models, where not only societal drivers and pressures 
are modelled with respect to their ecological outcomes, but 
where resulting ecological outcomes will change societal 
actions accordingly. Designing, constructing and testing 
such models will need to reach across disciplines, a time-
consuming and non-trivial process, but one that has borne 
fruit before, e.g. through integrating physical and biologi-
cal components (Saito et al. 2009; Guswa et al. 2020). We 
envision two concrete steps towards such integrated models: 
(1) connecting existing models to explore the current reach 
of existing tools and (2) applying and integrating the NFF 
in the development and set-up of future freshwater model-
ling efforts.

Connecting existing models

Connecting already existing models by finding common 
denominators between them on which they can connect, 
can help push the field forward towards more integrative 
modelling. For instance, models of nutrient runoff may 
be connected to ecological models using nutrient loads as 
inputs (Li et al. 2019). Similarly, ecosystem service pro-
visioning models can be connected to ecological models 
through the ecological outcomes the services depend on. 
Doing so allows for linking existing models to start with 
predicting varying aspects of the value perspectives. Work-
ing with different connected models will allow the field to 
gain insights into aspects of propagation impacts as well 
as their respective uncertainties among model components 
(Tscheikner-Gratl et al. 2019). Optimising such separated 
chains of models towards a predefined target will prove 
challenging when the models are not integrally connected 
(i.e. run separately and sequentially). To tackle this chal-
lenge, defining intermediate targets corresponding to each 
model can offer a solution to still perform an optimization, 
though this is more cumbersome than in a fully integrated 
model. Nonetheless, connecting existing models makes the 
most of already existing tools and knowledge, and could 
serve as a platform to work toward interdisciplinary teams 
by connecting model experts. Existing calls to unite efforts 
for freshwater biodiversity science and conservation [i.e. 
‘Alliance for Freshwater Life’ (Darwall et al. 2018), the 
‘Emergency Recovery Plan’ (Tickner et al. 2020), the ‘Rec-
ommendations for Safeguarding Freshwater life beyond 
2020’ (van Rees et al. 2021)] and the IPBES invitation to 
modelling communities around the world should be encour-
aged to try out the Nature Futures Framework (Decision 
IPBES-9/1), and will offer platforms to combine existing 
freshwater models and explore their application domain in 
the context of the NFF.
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Applying the NFF to freshwater policy and management

The NFF, and the models designed within its wake, can be 
applied to freshwater policy and management at global to 
local spatial scales to support desired nature futures. This 
would be in line with Feio et al. (2021), who identified the 
need for establishing common collaborative frameworks for 
managing international river catchments.

Applying the NFF to freshwater management and policy 
at the global scale can ensure that a plurality of value per-
spectives is considered while leaving room for local model-
ling efforts to specify such perspectives in more detail. We 
foresee that the NFF will inform global studies that focus 
on freshwater nature and biodiversity in general, on global 
drivers of change, on supporting and regulating ecological 
services (e.g. food provision, freshwater provision, nutrient 
retention, greenhouse gas emissions) and preserving trans-
national cultural heritage, such as rivers. Global studies 
may find that the inclusion of certain value perspectives is 
challenging since the valuation of ecosystem services and 
biodiversity vary both regionally and culturally. For even 
though cultural relationships with nature exist all around 
the globe, they have no single denominator. Participation of 
diverse governmental and non-governmental stakeholders 
and community representatives will be needed to expand 
freshwater policy at global or national scales to ensure the 
adoption and integration of NFF perspectives into coherent 
legislative frameworks.

At the local or regional scale, the NFF can be instru-
mental in refining watershed and water body management. 
Water and nature managers as well as local inhabitants will 
be necessary to co-design eco-centric waterscapes and man-
agement strategies that ensure sustainable future water qual-
ity for nature and people in a region. We foresee that local 
studies will be able to focus on specific nature conservation 
targets, provisioning ecosystem services and the expression 
of the regional and local cultural values of nature. The NFF 
could aid in developing collaborative river restoration goals 
and targets, which are critical for success (Angelopoulos 
et al. 2017). The application of NFF can also be used to 
identify trade-offs among management options (Palacios-
Abrantes et al. 2022). Modelling of freshwater systems in 
the NFF context could support the characterization of the 
full range of projected impacts for permitting development 
activities in aquatic systems. Chen and Olden (2017) applied 
a similar approach to the management of a dam-regulated 
river.

Connecting local and global freshwater modelling 
approaches within the context of the NFF ensures inter-
operability, in that they mutually make use of each other’s 
insights, both scaling up and scaling down, and supports a 
shared consciousness of the plurality of nature across spa-
tial scales. But, ultimately, the proof of the pudding is in 

the eating. Practical modelling applications of the NFF are 
needed to learn from experience and build on each other’s 
work. We hope that our article will provide an important 
impetus in this regard.

Conclusion

In our exploration of the NFF for freshwater ecosystem 
models we have found that the NFF aligns with several cur-
rent concepts in freshwater ecology. Furthermore, we can 
translate the NFF to freshwater systems through scenarios, 
with freshwater futures characterised by indicators. We 
also found that existing freshwater ecosystem models can 
benefit from the use of the NFF by characterising freshwa-
ter processes and pathways, and quantifying the effects of 
alternative scenarios. Current freshwater ecosystem models 
can represent Nature for Nature, partially represent Nature 
for Society, and represent limited or indirect aspects of 
Nature as Culture. We believe that the knowledge gaps that 
exist should be bridged by mobilising existing freshwater 
research communities and projects to model nature futures 
for freshwater ecosystems. We see the development of the 
Nature Futures Framework under IPBES as an opportunity 
for freshwater modelling communities from across the world 
to strengthen the representation of freshwater nature and 
biodiversity in global environmental governance. At the 
same time, we believe that innovations and novel collabora-
tions are necessary to fully operationalize this new scenario 
framework for it to deliver on the promise of guiding human 
societies towards desirable futures for people and nature. 
We, therefore, conclude with a call to action: “Only by join-
ing forces and expertise can we solve the global freshwater 
biodiversity crisis.”
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